
Supplementary Information 

A. Model descriptions 

EPIFIL model description 

The mathematical model of LF transmission dynamics 

We employed a genus specific mosquito-vectored transmission model of LF to carry out the modeling 

work in this study 1-5. Briefly, the state variables of this hybrid coupled partial differential and differential 

equation model vary over age (a) and/or time (t), representing changes in the pre-patent worm burden per 

human host ( ( , )),P a t adult worm burden per human host ( ( , )),W a t the microfilariae (Mf) level in the 

human host modified to reflect infection detection in a 1ml blood sample ( ( , )),M a t the average number of 

infective L3 larval stages per mosquito (L), and a measure of immunity ( ( , ))I a t developed by human 

hosts against L3 larvae. The state equations comprising this model are: 
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The above equations involve partial derivatives of four state variables (P - pre-patent worm load; W - 

adult worm load; M - microfilaria intensity; I - immunity to acquiring new infection due to the pre-

existing total worm load where WT = W(a,t) + P(a,t)). Given the faster time scale of infection dynamics 

in the vector compared to the human host, the infective L3-stage larval density in mosquito population is 

modeled by an ordinary differential equation essentially reflecting the significantly faster time-scale of 



the infection dynamics in the vector hosts. This allows us to make the simplifying assumption that the 

density of infective stage larvae in the vector population reaches a dynamic equilibrium (denoted by L*) 

rapidly 1,2,5-7. This basic coupled immigration-death structure of the model as well as its recent extensions 

has been extensively discussed previously 1,2,4-7. The effects of worm patency are captured by considering 

that at any time t, human individuals of age less than or equal to the pre-patency period, τ, will have no 

adult worms or Mf, and the rate at which pre-patent worms survive to become adult worms in these 

individuals at a > τ is given by exp( )ζ µτ= − . The term ( )f M enables us to account for the different 

establishment and development rates of the incoming L3-stage larvae as adult worms depending on the 

genus of mosquito vectors as expressed below: 
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 for mosquitoes of Culicine genus. 

In the above, 0[ ]Link k k M= + is the shape parameter of the negative binomial distribution on the Mf uptake 

whereas r andκ are respectively the rate of initial increase and the maximum level of L3 larvae. See 

Table S1 for the description of all the model parameters and functions. The details of the derivation of the 

two uptake functions are given elsewhere 2. 

Bayesian Melding fitting of the LF model to the baseline data 

We follow the BM procedure of model fitting to data, outlined in detail in our previous work 1,5. In brief, 

we begin by using the known ranges of the parameter values to generate distributions of parameter priors. 

We then randomly sample with replacement from these prior distributions to generate 200,000 parameter 



vectors, which are then run using the ABR values, if given, for a site to generate model outputs. The 

model outputs are then melded with age-stratified Mf prevalence data, by calculating binomial log-

likelihoods for each parameter vector. In the resampling step of the BM method, a Sampling-Importance-

Resampling algorithm is then used to perform 500 draws with replacement to select from among the pool 

of parameter vectors generated as above, with probabilities proportional to their relative log likelihood 

values. This step generates the most likely parameter vectors describing the data. These resampled 

parameter vectors are then used to generate distributions of variables of interest from the fitted model (eg. 

age-prevalence curves, worm breakpoints and infection trajectories following treatments).  

Modeling intervention by mass drug administration 

Intervention by mass drug administration was modeled based on the assumptions that anti-filarial 

treatment with a combination drug regimen acts by killing certain fractions of the populations of adult 

worms and microfilariae instantly after the drug administration. These effects are incorporated into the 

basic model by calculating the population sizes of worms and microfilariae as follows: 
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where dt is a short time-period since the time-point

iMDAT when the ith MDA was administered. During this 

short time-interval, a given proportion of adult worms and microfilariae are instantly removed. The 

parametersω and ,ε are drug killing efficacy rates for the two life stages of the parasite while the 

parameter C represents the MDA coverage. Apart from instantaneous killing of microfilariae, the drug 

continues to kill the newly reproduced Mf by any surviving adult worms at a rate δreduc for a period of 

time, p. We model this effect as follows: 
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We simulate LF intervention by running the model with the fixed-values of the four drug-related 

parameters (ω, ε, δreduc, and p) for MDA coverage levels given by data. The first MDA round is 

implemented into the model by affecting the population sizes of worm and microfilariae from the baseline 

fits, and then the intervention is simulated forward in time for a number of years, with subsequent MDA 

rounds implemented annually. 

Modeling vector control 

To implement simulations of the impact of the integrated vector management (IVM) interventions carried 

out during the period 1981 - 1985 in  Pondicherry8,9  on the monthly biting rate (MBR) in EPFIL, we fitted 

a segmented exponential function (i.e. 0 1exp[ ]MBR MBR a t= ), capturing the observed decline (for the 

period 1981 to 1985, when the IVM was in effect, with measured 0MBR  in 1980 (= 2200) 8,9 and

1 2.1a = − ), and then the gradual rise in observed MBR for the period 1986 to 1992 when IVM was 

discontinued, with 0MBR in 1989 (= 345)8,9 and 1 0.12a = .  

Table S1 - Description the basic LF model parameters and functions used in the model. 

Parameter Definition (units) Range Refs 
λ Number of bites per mosquito (per month) [5, 15] 1,2,5,10,11 
τ Pre-patency period [6, 9] 12 
s Proportion of female worms 0.5 - 
μ The worm mortality rate (per month) [0.008, 0.018] 1,2,5,13-16 
α Production rate of microfilariae per worm (per month) [0.25, 1.5] 1,2,5,17 
γ The death rate of the microfilariae (per month) [0.08, 0.12] 1,5,15,17 
g Proportion of mosquitoes which pick up infection 

when biting an infected host 
[0.259, 0.481] 1,5,18 

κ Maximum level of L3 given Mf density [3.955, 4.83] 1,5 
k0 The basic location parameter of negative binomial 

distribution used in aggregation parameter  
( 0 Link k k M= + ) 

[0.000036, 0.00077] 1,5,8,9 

δ  Immunity waning rate (per month) [0, 0.000001]  1,5 
V/H Ratio of number of vector to hosts # /MBR λ  data 
kLin The linear rate of increase in the aggregation 

parameter defined above 
[0.00000024, 0.282] 1,5,8,9 

σ Death rate of mosquitoes (per month) [1.5, 8.5] 1,5,19 
ψ1 Proportion of L3 leaving mosquito per bite [0.12, 0.7] 17 
ψ2 The establishment rate1 [0.0000398, 0.00364] 1,2,5,19 
HLin A threshold value used in ( )h a to adjust the rate at 

which individuals of age a are bitten: linear rise from 
 [12, 240] months 1,5,7 



0 at age zero to 1 at age Hlin in years.
( ) /  for ; ( ) 1 for Lin Lin Linh a a H a H h a a H= < = ≥   

r Gradient of Mf uptake2 [0.0495, 0.22] 1,5 
c Strength of acquired immunity [0.0000003, 0.0109] 1,5 
IC Strength of immunosuppression3 [0.5, 5.5] 1,5 
SC Slope of immunosuppression function4 

(per worm/month) 
[0.01, 0.19] 1,5 

MDA drug-related parameters 
ω Worm killing efficacy (instantaneous) dependent on drug 

regimen 
4 

ε Microfilariae killing efficacy (instantaneous) dependent on drug 
regimen 

4 

δreduc Reduction in the worm’s fecundity over a period of 
time p 

dependent on drug 
regimen 

4 

p A time period during which the drug remains 
efficacious in reducing the fecundity of the surviving 
adult worms 

dependent on drug 
regimen 

4 

C Percentage of the population administered the drug data data 
Implementing vector control (VC) such as IVM modifies theV H ( MBR λ= ) 

VCMBR   0 1exp[ ]VCMBR MBR a t= , with 1 0a < for t∀ when VC 
is ON, otherwise 1 0a > . 

data and estimates  8,9 

Description Mathematical expressions of the functions Parameters   
Probability 
that an 
individual is 
of age a 
 π(a) 

0 0( ) exp[ ]a A B aπ = −  

Human age a in month, 
A0 and B0 estimated 

from country 
demographic data 

1,5,7 

Larvae 
establishment 
rate (modified 
by acquired 
immunity) 
Ω(a,t) 

*
1 2 1 2( ) ( )TL g I g Wψ ψ  

1ψ - proportion of L3 
leaving mosquito per 

bite; 2ψ - the 
establishment rate1

 

 

Adult worm 
mating 
probability 
ϕ(W,k)  

(1 )

1 1
2
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− +
 − + 
 

  
k – negative binomial 
aggregation parameter 

1,2,5,20 

Immunity to 
larval 
establishment 
g1(I) 

1
1 cI+

 

c – strength of immunity 
to larval establishment 

1,5 

Host 
immunosuppr
ession 
g2(WT) 

1
1

C C T

C T

I S W
S W

+
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IC – strength of 
immunosuppression; 
SC – slope of 
immunosuppression 

1,5 

 

1The proportion of L3-stage larvae infecting human hosts that survive to develop into adult worms1.  
2The gradient of Mf uptake r is a measure of the initial increase in the infective L3 larvae uptake by vector as M increases from 
01,7.  
3 The facilitated establishment rate of adult worms due to parasite-induced immunosuppression in a heavily infected human host  
4 The initial rate of increase by which the strength of immunosuppression is achieved as W increases from 021.  
# Note MBR (monthly biting rate) serves as an input to initialize the model, measured as mosquito bites per person per month, 
the value of which may be obtained from entomological surveys conducted in study sites. In the absence of the observed MBR 
value, the model has been adapted to estimate it from the community-level Mf prevalence data. 
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LYMFASIM model description 

The simulation model, LYMFASIM, describes the transmission and control of lymphatic filariasis in a 

dynamically changing human population [1]. The model employs the technique of stochastic 

microsimulation [2]. The model describes the dynamics of human, vector, and the parasites. The 

microsimulation technique allows LYMFASIM to take account of variation in in the human population 

characteristics (age, sex, exposure to mosquito bites, ability to develop immune responses, inclination to 

get treatment, etc) and in the adult parasites (lifespan, production of Mf, etc). Details of parasite control 

(coverage, frequency and duration of treatment, drug effects on adult parasites and/or microfilaria), vector 

control (duration, effect of vector control in terms of reduction in man vector contact), and surveillance 

(time and type of survey, whether the complete population is examined or a selected cohort, diagnostic 

test characteristic including the volume of the blood sample for mf detection) can be specified. A detailed 

description and mathematical formulation of the model are given in an earlier publication [1]. Here we 

provide a brief description.  

Human population dynamics 

The human population dynamics is governed by birth and death processes. The probability to die at a 

certain age is defined by a life table. The cumulative death rate for intermediate ages is obtained by linear 

interpolation. The expected number of births (per year) at a given moment depends on the number of 

women and their age-distribution. Immigration and emigration are not considered in the model.  

As explained above, the model allows for heterogeneities within the human and parasite population.  The 

characteristics of individuals are determined by chance and determine an individual’s infection load in the 

absence of interventions. The model keeps track of the life histories of each human individual, focusing 

on the acquisition and loss of adult worms, microfilaria density and participation in mass treatment 

(further explained below). 

Transmission and parasite dynamics 

A key-variable in the model is the force-of-infection, foi, defined as the number of new immature 
parasites (i.e., those that survived the larval stage) per month. This foi will vary over time and between 
individuals. For individual i at time t, it is calculated as follows: 

)](1[)()( tRlsrtmtptfoi iii −××=   



The variable Rl describes the level of immunity to L3-larvae and may vary between 0 (no immunity) and 
1 (full immunity, no L3-larva will survive). Its calculation will be presented below. The parameter sr 
describes the chance that an inoculated L3 larva will survive and reach the stage of immature worm in the 
absence of immunity ('success-ratio'). The variable mtp is the monthly transmission potential, which 
follows from: 

)()(3)()( tEtLtmbrtmtp ii ××=   

with mbr(t) quantifying the monthly biting rate (no. of mosquito-bites per month) for an average adult 

person, )(3 tL being the average number of infective larvae released per vector-bite and Ei(t) quantifying 
a person's relative exposure. All these variables are time-dependent. The relative exposure of a person has 
two components: an age-sex dependent component (described by the function Eai(a(t),s)) and a random 
component ('exposure index', Ei): 

iiiii EistaEatE ×= )),(()(   

In many endemic areas the prevalence and intensity of infection among males is higher than among 
females [3], which could reflect sex-differences in exposure. However, in order to reduce the complexity 
of the model, in this paper we assume an equal exposure between the sexes. Possible sex-differences are 
assumed to be included in random exposure variation (Ei). The age dependent component is described as 
follows: at birth a person has an exposure of E0, thereafter it increases linearly to reach a maximum of 1.0 
at the age of amax. The exposure index (random component) is assumed to be a life-long property of a 
person. Its value is randomly selected from a gamma probability distribution with mean = 1 and shape-
parameter αE. This gamma-distribution allows for persons with low or very low relative exposure.  

The average number of infective larvae released per mosquito-bite ( )(3 tL ) is calculated as follows: 
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In this expression N is the total number of individuals in the human population. L3i is the average number 
of L3-larvae resulting from a blood meal on person i given survival of the mosquito between the uptake of 
microfilariae and the development to the L3-stage. The linear factor v (<1) combines such factors like the 
probability that an L3-larva will be released, the fraction of potentially infectious mosquitoes (i.e., those 
that had a blood meal before), and survival of the mosquitoes under field conditions. 



Based on experimental data, the relation between the human Mf density m (as measured by the number of 
Mf in a blood-smear of 20 µl) and the number of L3 that will develop in feeding mosquitoes (given 
survival of the mosquitoes) is described by the following hyperbolic function [4]: 
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This relationship saturates at ϕ /ζ at high human Mf densities and has an initial slope of ϕ. Because of this 
saturation, the development of the parasite in the vector is one of the density regulation mechanisms in the 
transmission of the parasite. 

In case of a constant foi (which may be approximated in adults and in the absence of interventions or 
strong natural fluctuations), the expected equilibrium number of adult worms equals: 

)( TiTlfoiM ii −×=   

Tl is the mean lifespan of the parasite and Ti the duration of the immature stage. The lifespan is assumed 

to vary between parasites according to a Weibull distribution with mean Tl  and shape-parameter αTl. The 
duration of the immature stage is considered to be invariable. The parasite lifespan not only determines 
the equilibrium worm-load, but also the rate at which the worm-load declines in case of interruption of 
transmission. 

The dynamics in the Mf density m is given by the following expression: 

)()()1()( trtFtmstm iiii ×+−×=   

with s being the monthly survival of the microfilariae and r the number of microfilariae produced by each 
female worm per month and per 20 µl peripheral blood taken for diagnosis. F quantifies the number of 
adult female worms. On average F=M/2, but because the worm-load M is a discrete number, particularly 
at low worm numbers the sex-ratio may deviate from 1:1. The Mf density is defined as the average 
number of Mf in a 20-µl blood smear or a multiplication of this. The actual (discrete) number of Mf 
counted in the smear is a random selection from a Negative Binomial distribution with mean = mi and 
parameter of dispersion km. 

The Mf production r follows from: 

)](1[)( 0 tRwrtr ii −×=   

In this expression r0 is the Mf production in the absence of an immune-response and in the presence of at 
least one adult male in the human host. In case of single-sex infections, Mf production is assumed to be 



zero. Rw quantifies the immune-responsiveness against the adult worms (see below). In case Rw=1, the 
immune-system will completely block the development and production of microfilariae. 

In LYMFASIM we assume two mechanisms for the impact of the immune system on the dynamics of the 
parasite: (1) anti-L3 immunity caused by prolonged exposure to L3-antigens, resulting in a reduction of 
the success of inoculated L3-larvae to mature and settle in the human body, and (2) anti-worm immunity 
caused by the cumulative presence of adult parasites, modelled as a reduction in the fecundity of female 
worms. Though the way it is modelled in LYMFASIM is debatable, the assumption of these two types of 
responses is in accordance with the existing knowledge about the regulation of the parasite [5, 6]. 

The first type of response is deduced from the work of Day et al. [7] who found antibodies to the L3 
surface mainly in subjects of 20 years and older, i.e. subjects with the longest history of L3-inoculation. 
An age-specific increase in the presence of antibodies was also found by Beuria et al. [8], who further 
concluded that antibody levels were highly variable between individuals. As regards the anti-worm 
immunity, it has been suggested that prolonged presence of adult parasites causes a breakdown in 
tolerance to the parasites, resulting in clearance of microfilariae and progress of disease [5]. Whether and 
to what extent the adult worms or the microfilariae are the target of this response is not clear. In the model 
we assume that immune-responses cause a reduced fecundity (Mf output). 

The mathematical formulation for both types of immune-responses is analogous to a model proposed by 
Woolhouse [9]. The level and dynamics of anti-L3 immunity in person i at time t is given by: 

)](exp[1)( , tHltRl iilli ××−−= ργ   

)()1()( tmtptHltHl iili +−×= β   

The implication of the anti-L3 immunity Rl is given in equation 2. It varies with the ‘experience of L3 
infection’, Hl, which increases with the number of inoculated L3-larvae (quantified by the monthly 
transmission potential mtp) and which decreases each month with a factor β l. This decrease represents the 
decay in specific memory cells or antibodies. The factor γ l (‘strength of anti-L3 immunity’) translates the 
experience of L3-infection into an immune-response. Noticing that the immune-responsiveness may vary 
between individuals even in the case of similar experience of infection, the factor ρl is included. This 
factor varies according to a gamma probability distribution with mean = 1 and shape-parameter αl. This 
definition of anti-L3 immunity is analogous to the ‘LL’ model described by Woolhouse [9]. 

The expressions for the anti-worm (anti-fecundity) response are highly similar to those for the anti-L3 
response and is analogous to Woolhouse’s ‘AE’ model: 

)](exp[1)( , tHwtRw iiwwi ××−−= ργ   

)()1()( tMtHwtHw iiwi +−×= β   



This type of response is driven by the current and past worm-load M (experience of worm-infection). The 
factors βw (decay of specific antibodies of memory cells), γw (‘strength of anti-worm immunity’), and ρw 
(immunity variation; described by a gamma distribution with mean 1 and shape αw) are thought to be 
independent from the corresponding factors for the anti-L3 immunity. The impact of anti-worm immunity 
is given by equation 9. 

The factors β l and βw determine the duration of the immune-responses after cessation of boosting 
(inoculation of L3-larvae, presence of worms). In the remainder, we will consider the following 
transformation of these parameters: 

12/)]ln(/)5.0[ln( lTHl β=   

12/)]ln(/)5.0[ln( wTHw β=   

These transformations express the half-life (in years) of the experience of infection (Hl or Hw) in the 
absence of boosting. We will call this 'immunological memory'. 

A complete list of all model assumptions and parameter values is provided in Table S2, with specification 
of their source.  

 
 

 



 

Table S2. LYMFASIM input: probability distributions, functions and parameter values. 

Parameter description (symbol) Model 
variant for 
India 
(Pondicher
ry) 

 Model 
variant for 
Africa 
(Malindi) 

 Model 
variant for 
PNG 
(Nanaha) 

  

Human demography        
Cumulative survival (F(a)), by age  Age Survival Age Survival Age Survival Fixed, as in 

[10, 11] 
 0 1 0 1 0 1  
 5 0.904 5 0.804 5 0.804  
 10 0.895 15 0.78 15 0.78  
 15 0.888 20 0.755 20 0.755  
 20 0.879 25 0.73 25 0.73  
 25 0.864 30 0.707 30 0.707  
 30 0.849 35 0.654 35 0.654  
 40 0.812 40 0.605 40 0.605  
 50 0.756 45 0.56 45 0.56  
 90 0 50 0.506 50 0.506  
   60 0.407 60 0.407  
   70 0.255 70 0.255  
   80 0.051 80 0.051  
   90 0 90 0  
        

Fertility rate per woman (R(a)), by age  Age Fertility 
rate 

Age Fertility 
rate 

Age Fertility 
rate 

Fixed, as in 
[10, 11] 

        
 0 0 0 0 0 0  
 5 0 5 0 5 0  
 10 0 15 0 15 0  
 15 0 20 0.116 20 0.116  



 20 0.075 25 0.23 25 0.23  
 25 0.254 30 0.245 30 0.245  
 30 0.222 35 0.207 35 0.207  
 40 0.096 40 0.147 40 0.147  
 50 0.013 45 0.077 45 0.077  
 90 0 50 0.031 50 0.031  
   60 0 60 0  
   70 0 70 0  
   80 0 80 0  
   90 0 90 0  
        

Initial population Age Males/fem
ales 

age Male/fema
les 

age Male/fema
les 

Fixed, as in 
[10, 11] 

 5 20/20 5 20/20 5 20/20  
 10 17/17 15 31/31 15 31/31  
 15 15/15 20 12/12 20 12/12  
 20 15/15 25 11/11 25 11/11  
 25 22/22 30 10/10 30 10/10  
 30 20/20 35 8/8 35 8/8  
 40 15/15 40 7/7 40 7/7  
 50 13/13 45 5/5 45 5/5  
 90 13/13 50 4/4 50 4/4  
   60 7/7 60 7/7  
   70 4/4 70 4/4  
   80 1/1 80 1/1  
   90 1/1 90 1/1  
        

Maximum population size 5000  750  750  Assumed 
Proportion removed when maximum 
population size is reached 

10%  10%  10%  Assumed 

        
Exposure        



External force-of-infection at start of burn-in 
period 

0.5  2  2  Assumed 

Duration of external force-of-infection at 
start of burn-in period 

4 years  2 years  2 years  Assumed 

        
Average mosquito biting rate for adult men 
(mbr)  

fitted to 
data 

 fitted to 
data 

 fitted to 
data 

  

Seasonal variation no  no  no   
exposure at age 0 (E0) 0.26  0  0  Previously 

estimated 
by fitting 

to data 
[10];slightl
y adjusted 

for 
africa/PG 

age at which maximum exposure is reached 
(amax) 

19.1  20  20  Previously 
estimated 

by fitting 
to data 

[10];slightl
y adjusted 

for 
africa/PG 

Type of probability distribution describing 
variation in the individual exposure index Ei, 
due to personal factors (fixed through life) 
given age and sex 

gamma 
distributio
n 

 gamma 
distributio
n 

 gamma 
distributio
n 

 Assumed 

mean 1   1  1  By 
definition 

αE 1.13  0.26  fitted to 
data 

 Previously 
estimated 



by fitting 
to data 
[10, 11] 

        
Parasite dynamics within host        
Success ratio (sr) 0.00103  0.00088  0.00088  Previously 

estimated 
by fitting 

to data 
[10, 11] 

Shape-parameter for the gamma-
distribution describing individual variation in 
the ability to develop an anti-L3 immune-
response (rho-l) 

1.07  NA  NA  Previously 
estimated 

by fitting 
to data 

[10] 
Strength of immunological memory for anti-
L3 immunity (gamma-l) 

0.0000589  NA  NA  Previously 
estimated 

by fitting 
to data 

[10] 
Duration of immunological memory for anti-
L3 immunity (THl), in years 

9.6  NA  NA  Previously 
estimated 

by fitting 
to data 

[10] 
Anti-fecundity immunity        
Shape-parameter for the gamma-
distribution describing individual variation in 
the ability to develop an anti-L3 immune-
response (rho-w) 

NA       

Strength of immunological memory for anti-
L3 immunity (gamma-w) 

NA       

Duration of immunological memory for anti-
L3 immunity (THw), in years 

NA       



        
Average worm lifespan (Tl) 10.2 years  10.2 years  10.2 years  Previously 

estimated 
by fitting 

to data 
[10] 

Type of distribution Weibull  Weibull  Weibull  Fixed, 
based on 

the 
estimated 

variation in 
adult worm 

lifepan for 
Onchocerca 

volvulus 
[12, 13] 

αTl.  2  2  2   
Duration of immature stage of the parasite 
in human host (Ti) 

8 months  8  8  Fixed [14] 

No. of Mf produced per female parasite per 
month per 20 ml peripheral blood in the 
absence of immunereactions and in the 
presence of at least 1 male worm (r0) 

0.606  0.58  0.58   

Monthly survival of the microfilariae, 
fraction (s) 

0.9  0.9  0.9  Fixed, 
based on 
[15] 

association between worm age and mf 
production rate 

NA       

Polygamy (All female worms produce mf in 
the  presence of at least one male worm.) 

 

yes  yes  Yes   

Uptake of infection by the vector      
Function relationship 

)(1
)(

)(3
tm

tm
tL

i

i
i ×+

×
=

ζ
ϕ

 
L3=a(1-exp (-(bM)c) L3=a(1-exp (-(bM)c) [4, 11] 



 ϕ = 0.09,  a 1.666 a 1.666  
 ζ = 0.013  b 0.027 b 0.027  
   c 1.514 c 1.514  

Transmission probability (v), fraction of the 
L3 larvae, resulting from a single blood meal, 
that is released by a mosquito 

0.1  0.1  0.1  Fixed, as in 
[10] 

Other        
Duration of warming up period 131  152  144  Assumed 

        
Surveillance        
Volume of blood examined for mf 20  100  200  Assumed 
skin snip variability 0.345  1.65  3.3  Previously 

estimated 
for 20 μL 
blood by 
fitting to 

data [10]; 
assumed 
for Africa 
and PNG 

        
Morbidity        
not applicable        
no excess mortality due to disease        

 



Control measures 

Mass drug administration (MDA): The impact of MDA can be simulated by specifying the exact 
moments of treatment (year, month), the drug or administration regimen applied with its efficacy, the 
fraction of people treated per round (coverage), and the compliance pattern.  

The model considers three possible effect mechanisms: (1) a fraction of adult worms is killed; (2) a 
fraction of female adult worms is permanently sterilized (i.e. they stop producing Mf); and (3) a fraction 
of mf is killed. The fraction of parasites affected can be constant or can vary according to a chosen 
probability distribution function.  

The effect of treatment on Mf is described as follows: 

)1()()( iii dmtmtm −×=+ ε   

with mi the number of microfilariae (scaled to the 20 μL blood volume normally used for diagnosis) at 
time t, treatment occurring between time t and t+ε, and dmi the fraction if Mf killed as a result of the 
treatment. The latter is stochastic variable (<= 1) which varies between persons and between treatments 
and which is described by a user-defined probability distribution function.  

The effect of treatment on adult worms is described by: 

)1()()( iii dMtMtM −×=+ ε   

with Mi the number of adult worm per individual and dMi the fraction of worms killed as a result of the 
treatment. dMi is again a stochastic variables (<= 1) which varies between persons and between 
treatments and which is described by a user-defined probability distribution function.  

A permanent or temporary reduction in mf production ri(t) by female parasites in individual i, who was 
treated at time τ, is simulated as follows: 

σ
τ








 −
×−×=

i
iíi Tr

tdftrtr )1()()( ' , for t- τ < Tri  

)1()(' ií dftr −×= , otherwise  

With )(' trí being the Mf production of female worms had person i not been treated (the outcome of 

equation [9], dfi  (<= 1) the irreversible reduction of fecundity caused by the treatment, Tri the period 
during which the female parasite recovers from treatment (assuming that immediately after treatment 
production is zero), and σ (>0) a shape parameter which determines how Mf production increases during 



the recovery period Tr: σ=1 implies a linear increase, σ <1 implies that recovery of productivity is mainly 
at the end of the period Tr (note that σ → 0 is equivalent to Tr → 0, while σ → ∞ implies the total 
absence of Mf prodution during Tr).Both Tri and dfi are stochastic variables described by a probability 
distribution function. 

All stochastic variables related to the effects of treatment (dm, dM, df, Tr) are by default assumed to be 
independent and to be generated for each person at each treatment. (The user can also to chose to attribute 
treatment efficacy as a fixed characteristic to an individual, who in that case always responds in the same 
way to treatment.) 

The compliance pattern describes the tendency of persons to participate in repeated treatment rounds. In 
case of random compliance, all individuals have the same probability to be treated (equal to the fraction 
covered). In case of systematic compliance, each person in the population is characterized by an 
invariable compliance factor (a random number between 0 and 1), which results in a treatment probability 
of either 1 (for compliance factor ≤ coverage) or 0 (for compliance factor> coverage). Consequently, if 
coverage is constant over time, some individuals will always be treated while the remaining persons are 
never treated. In the case of semi-systematic compliance pattern, the compliance factor indicates a 
person’s tendency to participate. Random numbers define whether an individual is actually treated or not. 
The latter pattern is presumably most realistic [16].  

LYMFASIM also allows the simulation of selective treatment. In that case, treatment is only provided to 
those persons who were Mf positive in the most recent survey (which may take place in the same month 
as treatment, see below). Coverage and compliance play no role.  

 

Vector control: Vector control is modelled as a reduction of the average monthly biting rates during a 
given period of time. The number of such periods can be chosen. A period of vector control is specified 
by the year + month of the beginning of the strategy and the year + month of the end of a strategy.  

Epidemiological Surveys 

During the simulation, surveys will take place at user-defined time points. During a survey, for all 
simulated individuals, the actual number of male and female worms is recorded, and a diagnostic test is 
simulated to obtain Mf counts. It is assumed that Mf are counted in 20μL blood smear, or a multiple φ of 
this (taken at the appropriate time during the day in view of circadian periodical appearance in the blood). 
The Mf count Mfi for person i is then given by: 

),( mii kmNegbinMf ×= φ   

i.e. the number is assumed to follow a negative binomial distribution with clumping factor km. The user 
can specify other distributions if deemed more appropriate. 



Model outcomes 

The primary outcomes of the model are predicted trends in the Mf prevalence and mean Mf intensity in 

the population as well as age-and gender specific prevalence and intensity. These outcomes are based on 

Mf counts for all individuals in the population, while taking account of test characteristics that determine 

sampling variation and the possibility of false-negative test results. This makes simulation outcomes 

directly comparable to field data. For the present study, we assumed that Mf counts were done by 

microscopic examination of a 20-ml or 60-ml thick smear of night finger-prick blood. 

Approach to model fitting 

We fitted the model to community-specific age-patterns in mf prevalence, based on a chi-square 
goodness-of-fit statistics (see below). In the following, we discuss the details of the fit procedure per 
location: 

• Pondicherry, India (vector Culex quinquefasciatus) 
o We fixed all model parameters at the previously derived point estimates, except the 

monthly biting rate (MBR). See Subramanian et al 2004 [10] for a complete overview of 
all parameter values. 

o Model predicted mf prevalence were derived assuming that mf are counted in one 20μL 
blood smear. 

o The MBR was fitted to data. We assumed no seasonality in transmission, so that the 
MBR is equal for all 12 months and ABR = 12 * MBR. We performed a large number of 
simulations, varying the MBR biting rate from 1500 to 3500 with increments of 10, doing 
multiple repeated runs for each biting rate value. Outcomes of repeated runs with the 
same MBR vary, due to stochasticity in the model. In total we did about 10,000 
simulations. 

o For each individual run (defined by MBR and seed for the random number generator) we 
calculate the chi-square, as indicator for the goodness-of-fit of model predictions to 
baseline data. 

o We identified MBR and seed combinations that resulted in a good fit to the baseline data 
and went on to predict trends infection during integrated vector management.  

o NB. The point estimates of fixed model-parameters were estimated based on a much 
more extensive analysis of longitudinal data from the same location. See Subramanian et 
al 2004 [10]for a complete description of methods and overview of all parameter values. 

• Malindi, Kenya (vector anopheles): 
o We fixed all model parameters at the previously derived point estimates for our Africa 

model, except for the MBR. See Stolk et al 2008 [11] for an overview of all parameter 
values. 



o Model predicted mf prevalence were derived assuming that mf are counted in five 20μL 
blood smear, 100 μL in total. 

o We fitted the MBR to data as we described above for Pondicherry. Again, we assumed no 
seasonality in transmission, so that the MBR is equal for all 12 months and ABR = 12 * 
MBR. We performed a large number of simulations, varying the MBR biting rate from 
400 to 3000 with increments of 10, doing multiple repeated runs for each biting rate 
value. Outcomes of repeated runs with the same MBR vary, due to stochasticity in the 
model. In total we did about 10,000 simulations. 

o For each individual run (defined by MBR and seed for the random number generator) we 
calculate the chi-square, as indicator for the goodness-of-fit of model predictions to 
baseline data. 

o We identified MBR and seed combinations that resulted in a good fit to the baseline data 
and went on to predict trends infection during MDA, with fixed input assumptions 
regarding drug efficacy and treatment coverage.  

• Nanaha, Papua New Guinea (vector anopheles): 
o LYMFASIM was not previously quantified to mimick transmission dynamics is Papua 

New Guinea.  
o We assumed that the biological parameters are not different from the African regions 

with Anopheles-transmitted infection.Therefore, all parameters were kept the same as in 
the Africa model, except for the two parameters related to exposure patterns. See Stolk et 
al 2008 for an overview of all fixed parameter values. 

o The two fitted parameters were 
 MBR 
 The shape-parameter αE of the gamma distribution, describing variation in 

exposure between individuals 
o To assess which combinations of MBR and αE  value are in concordance with observed 

data, we varied both parameters randomly (MBR was varied between 1 and 3500; and 
1/αE  was varied between 0 and 10). We did only one run per combination (always the 
same seed for the random number generator). 

o As described above, we used chi-square to assess the goodness-of-fit of model to data for 
each indiviual run (combination of MBR, αE value). For each individual run (defined by 
MBR and seed for the random number generator) we calculate the chi-square, as 
indicator for the goodness-of-fit of model predictions to baseline data. 

o We identified MBR and αE value that resulted in a good fit to the baseline data and went 
on to predict trends in infection during MDA, with fixed input assumptions regarding 
drug efficacy and treatment coverage.  

 

Goodness of fit statistics 

Simulation results are compared with the data using the following equation, for each age group 
separately: 
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Where,  

a1= number of mf positives in the age group under consideration, in the data 
b1= number of mf negatives in the age group under consideration, in the data 
n1 = total number examined in the age group under consideration, in the data 
a2= number of mf positives in the age group under consideration, in the model 
b2= number of mf negatives in the age group under consideration, in the model 
n2 = total number examined in the age group under consideration, in the model 
n = n1+n2 
 

 
The fit of model predictions to data was considered to be acceptable if the chi-square value for each age 
group was below 3.84. 

Due to stochastic nature of the various processes involved in the model, the simulation output will be 
subject to random variation and will only represent an estimate of the true outcome of the model.  
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TRANSFIL model description

The TRANSFIL model of LF infection was employed [6]. The model is a multi-scale stochastic sim-
ulation of individuals with worm burden, microfilaraemia and other demographic parameters relating
to age and risk of exposure. Humans are modelled individually, with their own male and female worm
burden denoted Wm

i and W f
i . The density of mf in the peripheral blood is also modelled for each

individual and denoted Mi . The total mf density in the population contributes towards the cur-
rent density of L3 larvae in the human-biting mosquito population. The model dynamics are divided
into the individual human dynamics, including age and turnover; worm dynamics inside the host;
microfilariae dynamics inside the host and larvae dynamics inside the mosquito.

Worm dynamics

For each individual i both male and female worms are added according to their bite risk bi that is
individually drawn from a gamma distribution with mean 1 and shape parameter k. The rate at which
worms are acquired depends on a number of stages of larvae life cycle as well as characteristics of the
host. These are the mean total number of bites per individual per month br; the probability that an
L3 larvae leaves the host during a biting event ψ1; the probability that the L3 enters the host ψ2; the
proportion of L3 within the host that develop into adult worms; the age-dependent biting rate h(a)
that increases with body size to saturate at age nine [8]; and the mean equilibrium larvae density L∗.
Each worm has a constant rate of death µ, which is the same for males and females. The stochastic
dynamics for an individual i can be summarised as,

Wm
i →Wm

i + 1 at rate 0.5brbiψ1ψ2s2h(ai)L
∗, (1a)

W f
i →W f

i + 1 at rate 0.5brbiψ1ψ2s2h(ai)L
∗, (1b)

Wm
i →Wm

i − 1 at rate µWm
i , (1c)

W f
i →W f

i − 1 at rate µW f
i . (1d)

Mf dynamics

The microfilariae dynamics are dependent on the total number of adult male and female worms. W.
bancrofti is assumed to be completely polygamous [15] and hence the rate at which mf are produced
is dependent upon the number of female worms combined with the presence of male worms. It is also
assumed that there is death of the microfilariae that is constant and independent of the density of the
mf. The dynamics of mf for an individual i are therefore

dMi

dt
= αW f

i I(W
m
i > 0)− γMi (2)

where the function I is one if there are male worms and zero if not.

Larvae dynamics

The larvae develop from the mf that enter the mosquito during a blood meal from an infected host.
There are two functional forms of this relationship that differ according to mosquito genus. For Culex,
where the cibarial armature is less-developed than in other species, mf can survive at lower densities
[7]. The relationship here is

L(m) = κs1(1− e−r1m/κs1).

For Anopheles there is a facilitation relationship with limitation for larger concentration of host mf.
This relationship is given by

L(m) = κs2

(
1− e−r2m/κs2

)2
,



where m here is concentration of mf per 20µL taken during a blood meal and r, κ are parameters
relating to the functional form of the uptake curve [3]. Each individual contributes towards the
pool of larvae in the mosquito population according to their concentration of mf in the peripheral
blood along with their intrinsic bite-risk bi. The uptake of larvae is an average of all individual’s mf
concentration weighted by their bite-risk i.e.

L̃ =
∑
i

L(mi)bi/
∑
i

bi,

giving the average number of larvae per mosquito.
The dynamics of larvae in the mosquito are fast compared with the other aspects of infection due

to the relatively short life-span of mosquitoes compared with filarial worms. The density is dependent
on the number of bites per mosquito λ, the proportion of mosquitoes which pick up infection when
biting an infected host g; the death rate of mosquitoes σ and the proportion of L3 leaving the mosquito
per bite, ψ. The averaged number of larvae taken up in the population L̃ is calculated from the uptake
curves described above,

dL

dt
= λgL̃− (σ1 + λψ1)L.

Finally the equilibrium value for L3 in a mosquito is given by

L∗ =
λgL̃

σ1 + λψ1
,

Host dynamics

Each individual begins with zero infection and a bite-rate exposure that is drawn from a Gamma-
distribution with mean 1 and shape parameter k. The shape parameter defines how aggregated bites
are amongst individuals and consequently defines the aggregation of infection amongst individuals.
The human death rate τ is assumed to be constant throughout an individual’s lifetime with a cut-off
at age 100. This results in an exponential with cut-off distribution for the ages of individuals in a
simulation.

Modelling of intervention

MDA

An MDA event occurs simultaneously across all individuals. Before the start of a campaign, each
individual is assigned a random value ui defining their likelihood of participating in an MDA round.
These ui are drawn from a distribution that controls for both the coverage of MDA and the correlation
between rounds (systematic non-adherence) (see [6] for details). At an MDA event a random variable
z is drawn for each individual and if z > ui, then that individual receives treatment. This means that
the pre-defined coverage is an average and the actual coverage in a simulation will fluctuate around
this average.

For an individual that receives MDA, their mf concentration (Mi) and their male and female worm

burden (Wm
i and W f

i ) are reduced by a factor according to the efficacy of the treatment. furthermore
there is a period after MDA during which the production of mf for that individual is diminished.

Vector control

Vector control is considered via integrated vector management (IVM). For the period under which IVM
occurs, the average monthly bite rate br is reduced by a factor, which has been previously estimated.

Model fitting

We employed an Approximate Bayesian Computation (ABC) fitting approach with a Particle Control
Rejection (PRC) scheme [18]. The main idea of ABC is to perform Bayesian inference when a likelihood
is either computationally-intractable or not feasible to define. As an alternative, a sufficient summary



statistic is used for the model data and compared to the data to be fitted. A distance metric is used
to define the error between the data drawn from the model and the real data. As the error between
the summary statistics of the model-generated data and real data approaches zero, the posterior
distribution is approximated with greater accuracy. More precisely, the function f summarises the
data D in some form. Model data drawn from the parameters θ are given as M∗

θ , where the star
denotes this is a realisation of the model-data and is subsequently a random variable. If ρ is a distance
metric for the summary data, then the posterior is calculated as

P (θ|D) ≈ P (ρ(f(D), f(M∗
θ )) < ε), (3)

where the error in the approximation reduces as ε is reduced.
The basic algorithm is as follows. For all parameters that are to be fitted (θ), a number of particles

(samples) are drawn from the prior distribution P (θ) to produce a set of particles θ∗i . A pre-defined
set of tolerances {ε0, . . . , εT } is used to allow exploration or the parameter space as well as avoiding
particles becoming stuck in local minima. A new set of particles is generated by randomly sampling
from θ∗i and perturbed using a zero-mean Gaussian random variable with small variance. The newly
generated particle is accepted if ρ(f(D), f(M∗

θ )) < ε, else it is rejected and another particle is generated
according the procedure defined. Once the desired number of particles has been accepted the tolerance
is lowered and a new set of particles are generated as before. Once the particles are generated for the
smallest tolerance (εT ), the algorithm terminates and these are used as the sample for the posterior.

For the fitting procedure, the summary statistic used was the age-prevalence for the age categories
[< 10, 10−19, 20−29, 30−39, 40−49, 50−59, 60−70]. The distance metric ρ used was a weighted sum
of squares

∑
iwi(pi − p∗i )2. The weights wi are the total number of individuals in each age-category

in the data, this was used to avoid over-fitting to age-classes that had few individuals in them.

Table 1: Summary of parameter values used to inform the model.

Parameter symbol Definition Value Source

λ Number of bites per mosquito 10 per month [10, 13]
V/H Ratio of number of vectors to hosts fitted to baseline

data
N/A

amax Age at which exposure to
mosquitoes reaches its maximum
level

20.0 [15]

ψ1 Proportion of L3 leaving mosquito
per bite

0.414 [4]

ψ2 Proportion of L3 leaving mosquito
that enter host

0.32 [5]

s2 Proportion of L3 entering host that
develop into adult worms

fitted to baseline
data

N/A

µ Death rate of adult worms 0.0104 per month [2, 9, 17, 16]
α Production rate of mf per worm 0.2 per month [4]
γ Death rate of mf 0.1 per month [4, 9]
g proportion of mosquitoes which pick

up infection when biting an infected
host

0.37 [12]

σ Death rate of mosquitoes 5 per month [5]
k Aggregation parameter of individ-

ual exposure to mosquitoes
fitted to baseline
data

[14, 1]

h(a) Parameter to adjust rate at which
individuals of age a are bitten

linear from 0 to
10, with maxi-
mum of 1.

[8]

ρ systematic adherence of MDA 0.25 [11]
pC coverage of MDA varied N/A
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B. Inter-model comparison of key parameters and functions 
As an accompaniment to the full model descriptions found in the Supplementary 

Information (SI) and Table 1 in the main text, Table S4 captures the key similarities and 

differences in terms of the model parameters used and optimized during model induction and 

data fitting, and in running simulations of interventions using annual mass drug administrations 

(MDAs) and vector control. The implementation differences among the three models are 

highlighted here by drawing attention to the deterministic versus stochastic approaches in 

managing uncertainty. EPIFIL is a deterministic model which allows for variation by sampling 

the majority of its parameters from uniform prior distributions. LYMFASIM and TRANSFIL fix 

many of their parameters and incorporate variation through stochastic model elements.  



Table S4 - Parameters and functions used in the LF models: EPIFIL (E), LYMFASIM (L), 
and TRANSFIL (T).   

Component Parameter/exogenous variable  @E @L @T Refs 
 Pre-patency period  2 1 - [1, 2] 
 Worm mortality rate 2 1 1 [2-9] 
 Production rate of microfilariae per worm 2 1 1 [2, 7-10] 
 Death rate of the microfilariae  2 1 1 [2, 7-10] 
 Proportion of mosquitoes which pick up infection when biting an 

infected host 
2 - 1 [8, 9, 11] 

 Maximum level of L3 given mf density 2 1 - [2, 8, 9] 
 Immunity waning rate 2 1 - [2, 8, 9] 
Humans The linear rate of increase in the aggregation parameter defined above 2 - - [8, 9, 12, 

13] 
 The establishment ratea 2 1 - [2, 7-9, 14] 
 Gradient of mf uptakeb 2 1 - [2, 8, 9] 
 Strength of acquired immunity 2 1 - [2, 8, 9] 
 Strength of immunosuppressionc 2 - - [8, 9] 
 Slope of immunosuppression functiond 2 - - [8, 9] 
 Probability that an individual is of  age 2 - - [8, 9, 15] 
 Worm mating probability 2 - - [7-9, 16] 
 Immunity to larval establishment 2 1 - [2, 8, 9] 
 Host immune suppression 2 - - [8, 9] 
 Number of bites per mosquito 2 - (Implicit) - [7-9, 17, 

18] 
Vectors Proportion of L3 leaving mosquito per bite 2 1 1 [2, 10] 
 Death rate of mosquitoes 2 - (Implicit) 1 [8, 9, 14] 
Community Location parameter (k) of negative binomial distribution used in 

aggregation parameter  
2 1/2 2 [2, 8, 9, 12, 

13] 
 Ratio of number of vector to hosts 1/2 2 2 Data  
 Exposure to mosquito bites as function of age  2 1 1 Data  
Intervention 
parameters 

Proportion of mf killed for an individual MDA round  1 1 1 [2, 9, 19, 
20] 

 Proportion of worm killed for an individual MDA round  1 1 1 [2, 9, 19, 
20] 

 Period during which MDA survived adult worms do not reproduce  1 1 1 [2, 9, 19, 
20] 

 Systematic non-adherence of MDA - 1 1  
 Coverage of MDA varied varied varied  
 Reduction in the monthly biting rate owing to IVM (integrated vector 

management), relevant for the Pondicherry site only. 
1 1 1 [2, 12, 13] 

 

aThe proportion of L3-stage larvae infecting human hosts that survive to develop into adult worms [8].  
bThe gradient of mf uptake r is a measure of the initial increase in the infective L3 larvae uptake by vector as M increases from 0 
[8, 15].  
c The facilitated establishment rate of adult worms due to parasite-induced immunosuppression in a heavily infected human host  
d The initial rate of increase by which the strength of immunosuppression is achieved as W increases from 0[21].  
@1: chosen from literature and used as fixed constant, 2: chosen from literature/expert knowledge and fitted.  
(-): Not applicable 

 



C. Performance-based model weighting 

The construction of multi-model ensembles for simulating LF transmission in this study first 

required the calibration and validation of the three individual models (EPIFIL, LYMFASIM, and 

TRANSFIL) for each given data set. The three sets of single-model outputs were then combined 

using a mean-squared error performance-based weighting scheme which is described in detail 

below [22]. 

Given yi, the observed baseline prevalence in age group i, a performance-based weighting for 

model k can be estimated as follows. First, we calculate the mean squared error (MSE) over Nk 

model simulations for model k: 

2
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where knix is the model-predicted prevalence in age group i for simulation n of model k. The 

weight for model k, denoted as kw , is then calculated as the inverse of the MSE: 1 .k
k

w
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=  

Further, individual normalized model weights for each of the K models can be calculated such 

that ˆ 1.kw =∑  This yields the following formula for the normalized weight: 
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The normalized weights are then applied to the single-model predictions such that the multi-

model ensemble mean prediction for each age-group i is a weighted average of the three single-

model predictions:  
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The model weights can also be applied to the single-model variances to calculate the multi-

model ensemble variance estimate which accounts for between-model and within-model 

variance. 
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In the above, iMMx denote the mean of the prediction in the ith age-group of the multi-model 

ensemble. The quantities 2
kiσ and 2

iMMσ are, respectively, known as the single and multi-model 

variances. 



D. Multi-model ensemble performance as a function of single-model 
diversity 
In this study, we tested whether the performance of the multi-model ensemble was related to the 

diversity of the constituent single models. The results showed a negative correlation (correlation 

coefficient = -0.66) between the diversity of a single model and the multi-model performance 

improvement over the single model. Figure S1 plots the relationship of the diversity and 

improvement statistics pertaining to post-intervention predictions tabulated in Table 3 in the 

main text. 

 

 
Figure S1 - Improvement in the performance of the MM ensemble over the single or individual 
(SM) ensembles in relation to diversity of the single models. There is a negative correlation 
(correlation coefficient = -0.66) between the diversity of the members of the single models and the 
improvement of the MM ensemble over the single models for forecasting and capturing the follow-up LF 
survey data. 



E. Results of ensemble construction with bias correction 

To account for systematic errors caused by model-specific uncertainties, such as variable 

model structures and parameter assumptions, a bias correction step can be performed on the 

single model ensembles before combining them to generate the multi-model ensemble. As an 

extension of the work presented in the main text, a linear transformation of the single model 

predictions was performed by fitting the coefficients ka and kb by least squares, and applying the 

correction as follows[23]: 

c
kni k k knix a b x= +  

where c
knix is the bias-corrected prediction given by the thi age group of the member n of model k. 

In this exercise, all model weighting was carried out based on the bias-corrected model 

predictions, c
knix , which has been demonstrated elsewhere to significantly improve the predictive 

performance of a multi-model ensemble[23, 24].  

 The performance of the bias-corrected multi-model ensemble during the training period 

was slightly poorer when compared to the performance of the multi-model ensemble which has 

not been bias-corrected. Table S5 shows the comparison of evaluation statistics for the two 

scenarios with regard to the ability to fit to baseline mf age prevalence data. The assigned model 

weights were not significantly impacted by the use of bias correction (Table S6). In addition to 

negatively impacting the performance of the multi-model ensemble during the training period, 

the correction procedure contributed to a loss in prediction skill and diversity of the multi-model 

ensemble with regard to the post-intervention (validation) period. Figure S2 shows the single 

model and multi-model ensemble predictions with respect to the follow-up survey data available 

for each site. Note the poor prediction skill especially of the multi-model ensemble for Nanaha 



(Figure S2B). Table S7 highlights where the bias-corrected ensemble was outperformed by the 

uncorrected ensemble.  

 



Table S5. Multi-model ensemble performance in fitting the pre-intervention mf prevalence 
(training data). Evaluation statistics are given for two scenarios for comparison: 1) when a linear bias 
correction is performed on the single model predictions prior to generating the ensemble, and 2) when no 
bias correction is performed. Bolded values indicate which scenario performed better for the 
corresponding site and evaluation statistic. 

Site ReRMSE Diversity 
 With BC Without BC With BC Without BC 

Malindi 0.507 0.476 2.707 3.083 
Nanaha 1.380 1.037 6.729 8.911 

Pondicherry 0.735 0.685 2.580 2.411 
 

 

Table S6. Model weights given to each single model in generating the multi-model ensemble. Model 
weights are given for two scenarios for comparison: 1) when a linear bias correction is performed on 
the single model predictions prior to generating the ensemble, and 2) when no bias correction is 
performed. 

Site Model Weight 
With BC Without BC 

Malindi EPIFIL 0.617 0.600 
LYMFASIM 0.279 0.287 
TRANSFIL 0.105 0.113 

Nanaha EPIFIL 0.349 0.318 
LYMFASIM 0.403 0.413 
TRANSFIL 0.248 0.269 

Pondicherry EPIFIL 0.141 0.171 
LYMFASIM 0.758 0.751 
TRANSFIL 0.101 0.077 

 

Table S7. Multi-model ensemble performance in predicting post-intervention mf prevalence 
(validation data). Evaluation statistics are given for two scenarios for comparison: 1) when a linear bias 
correction is performed on the single model predictions prior to generating the ensemble, and 2) when no 
bias correction is performed. Bolded values indicate which scenario performed better for the 
corresponding site and evaluation statistic. 

Site ReRMSE Diversity Average Improvement 
 With BC Without BC With BC Without BC With BC Without BC 

Malindi 0.669 0.888 2.091 2.105 0.214 -0.107 
Nanaha 1.480 1.068 11.283 13.645 -0.490 -0.084 

Pondicherry 0.960 0.927 1.774 1.892 -0.017 0.062 
  

 



 
Figure S2. Intervention simulations by the single and bias-corrected multi-model ensembles for 
Malindi, Kenya (A), Nanaha, PNG (B), and Pondicherry, India (C). The observed age-stratified 
prevalence data are shown as open black squares with 95%-CI bands. The mean predictions are shown by 
solid black lines, and the 2.5% and 97.5% predictions are illustrated by dashed black lines. This figure 
mirrors Figure 3 in the main text showing results which have not been bias corrected. 
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